CARM1 modulators affect epigenome of stem cells and change morphology of nucleoli.
نویسندگان
چکیده
CARM1 interacts with numerous transcription factors to mediate cellular processes, especially gene expression. This is important for the maintenance of ESC pluripotency or intervention to tumorigenesis. Here, we studied epigenomic effects of two potential CARM1 modulators: an activator (EML159) and an inhibitor (ellagic acid dihydrate, EA). We examined nuclear morphology in human and mouse embryonic stem cells (hESCs, mESCs), as well as in iPS cells. The CARM1 modulators did not function similarly in all cell types. EA decreased the levels of the pluripotency markers, OCT4 and NANOG, particularly in iPSCs, whereas the levels of these proteins increased after EML159 treatment. EML159 treatment of mouse ESCs led to decreased levels of OCT4 and NANOG, which was accompanied by an increased level of Endo-A. The same trend was observed for NANOG and Endo-A in hESCs affected by EML159. Interestingly, EA mainly changed epigenetic features of nucleoli because a high level of arginine asymmetric di-methylation in the nucleoli of hESCs was reduced after EA treatment. ChIP-PCR of ribosomal genes confirmed significantly reduced levels of H3R17me2a, in both the promoter region of ribosomal genes and rDNA encoding 28S rRNA, after EA addition. Moreover, EA treatment changed the nuclear pattern of AgNORs (silver-stained nucleolus organizer regions) in all cell types studied. In EA-treated ESCs, AgNOR pattern was similar to the pattern of AgNORs after inhibition of RNA pol I by actinomycin D. Together, inhibitory effect of EA on arginine methylation and effect on related morphological parameters was especially observed in compartment of nucleoli.
منابع مشابه
CARM1 regulates astroglial lineage through transcriptional regulation of Nanog and posttranscriptional regulation by miR92a
Coactivator-associated arginine methyltransferase (CARM1/PRMT4)-mediated transcriptional coactivation and arginine methylation is known to regulate various tissue-specific differentiation events. Although CARM1 is expressed in the neural crest region in early development, coinciding with early neuronal progenitor specification, the role of CARM1 in any neuronal developmental pathways has been u...
متن کاملCinnamaldehyde and eugenol change the expression folds of AKT1 and DKC1 genes and decrease the telomere length of human adipose-derived stem cells (hASCs): An experimental and in silico study
Objective(s): To investigate the effect of cinnamaldehyde and eugenol on the telomere-dependent senescence of stem cells. In addition, to search the probable targets of mentioned phytochemicals between human telomere interacting proteins (TIPs) using in silico studies. Materials and Methods: Human adipose derived stem cells (hASCs) were studied under treatments with 2.5 µM/ml cinnamaldehyde, 0....
متن کاملMicroRNA-181 Regulates CARM1 and Histone Aginine Methylation to Promote Differentiation of Human Embryonic Stem Cells
As a novel epigenetic mechanism, histone H3 methylation at R17 and R26, which is mainly catalyzed by coactivator-associated protein arginine methyltransferase 1 (CARM1), has been reported to modulate the transcription of key pluripotency factors and to regulate pluripotency in mouse embryos and mouse embryonic stem cells (mESCs) in previous studies. However, the role of CARM1 in human embryonic...
متن کاملارزیابی روشهای تولید سلولهای بنیادی پرتوان ـ مروری کوتاه
Background and Objectives: Nowadays, cell therapy is one of the most important and promising strategies in the treatment of diseases. Unique capabilities of stem cells caused them to be used in both research and treatment as a valuable resource in basic science and medical researches. The use of stem cells has been limited due to the related ethical problems. One of the major concerns of sci...
متن کاملResearch Paper: Investigating Morphologic Changes and Viability of Rats’ Bone Marrow Mesenchymal Stem Cells in Microgravity
Introduction: Mesenchymal Stem Cells (MSCs) are multipotent cells capable of duplication and auto-recovery and distinction from various cells including chondrocytes, adipocytes, chondroblasts, fibroblasts, and osteoblasts. Human stem cells are always subject to local and external mechanical loads. External loads are caused by physical activity in external environment loading to infliction of st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological research
دوره 64 5 شماره
صفحات -
تاریخ انتشار 2015